Home
Class 12
MATHS
यदि फलन f : R to R, f(x)=x^2 तथा g : R...

यदि फलन `f : R to R, f(x)=x^2` तथा `g : R to R ,g(x) =sin x , x in R` से परिभाषित हो , तो (gof ) (x) और (fog)(x) ज्ञात कीजिए तथा सिद्ध कीजिए कि `gof ne fog`

Promotional Banner

Similar Questions

Explore conceptually related problems

Let f : R to R :f (x) = x ^(2) g : R to R : g (x) = x + 5, then gof is:

f:R rarrR , f(x) =x^(2) , g : R rarr R , g(x) = 2^(x) , then {x|(fog)(x) = (gof)(x)} = ............

If f : R to R , f (x) =x ^(3) and g: R to R , g (x) = 2x ^(2) +1, and R is the set of real numbers then find fog(x) and gof (x).

Function f: R to R and g : R to R are defined as f(x)=sin x and g(x) =e^(x) . Find (gof)(x) and (fog)(x).

Function f: R to R and g : R to R are defined as f(x)=sin x and g(x) =e^(x) . Find (gof)(x) and (fog)(x).

f: R rarr R , f(x) = x^(2)+2 and g :R rarr R , g (x) = x/(x-1) then find fog and gof.

Let : R->R ; f(x)=sinx and g: R->R ; g(x)=x^2 find fog and gof .

Let f:R→R:f(x)=x^2 and g: R→R: g(x)=(x+1) . Show that (gof)≠(fog) .

Let :R rarr R;f(x)=sin x and g:R rarr Rg(x)=x^(2) find fog and gof.

If f : R rarr R is defined by f(x)=x^2+2 and g : R-{1} rarr R is defined by g(x)=x/(x-1) , find (fog)(x) and (gof)(x) .