Home
Class 12
MATHS
Let tan ^(-1) y= tan ^(-1) x+ tan ^...

Let ` tan ^(-1) y= tan ^(-1) x+ tan ^(-1) ""((2x)/(1-x^(2)))`
where ` |x| lt (1)/(sqrt(3))`. Then a value of y is -

Promotional Banner

Similar Questions

Explore conceptually related problems

Let tan^(-1) y = tan^(-1) x + tan^(-1) ((2x)/(1 -x^(2))), " where " |x| lt (1)/(sqrt3) . Then a value of y is

If tan^(-1) y = tan^(-1) x + tan^(-1)((2x)/(1 -x^(2)))", where" |x| lt 1/sqrt3 . Then, the value of y is

Let tan^(-1)y=tan^(-1)x+tan^(-1)((2x)/(1-x^2)) , where |x|<1/(sqrt(3)) . Then a value of y is :

Let tan^(-1)y = tan^(-1)x+tan^(-1)((2x)/(1-x^2)) , where |x| le 1/sqrt3 . Then the value of y is

Let tan^(-1)y=tan^(-1)x+tan^(-1)((2x)/(1-x^(2))) where |x|<(1)/(sqrt(3))* Then a value of y is : (1)(3x-x^(3))/(1-3x^(2))(2)(3x+x^(3))/(1-3x^(2))(3)(3x-x^(3))/(1+3x^(2))(4)(3x+x^(3))/(1+3x^(2))

Let tan^(-1)y=tan^(-1)x+tan^(-1)((2x)/(1-x^2)) , where |x|<1/(sqrt(3)) . Then a value of y is : (1) (3x-x^3)/(1-3x^2) (2) (3x+x^3)/(1-3x^2) (3) (3x-x^3)/(1+3x^2) (4) (3x+x^3)/(1+3x^2)

Let tan^(-1)y=tan^(-1)x+tan^(-1)((2x)/(1-x^2)) , where |x|<1/(sqrt(3)) . Then a value of y is : (1) (3x-x^3)/(1-3x^2) (2) (3x+x^3)/(1-3x^2) (3) (3x-x^3)/(1+3x^2) (4) (3x+x^3)/(1+3x^2)

Let tan^(-1)y=tan^(-1)x+tan^(-1)((2x)/(1-x^2)) , where |x|<1/(sqrt(3)) . Then a value of y is : (1) (3x-x^3)/(1-3x^2) (2) (3x+x^3)/(1-3x^2) (3) (3x-x^3)/(1+3x^2) (4) (3x+x^3)/(1+3x^2)

Let, tan^-1y=tan^-1x+tan^-1((2x)/(1-x^2)) , where absx lt 1/sqrt3 . Then a value of y is: