Home
Class 10
MATHS
2.overline(35) is...

`2.overline(35) ` is

Promotional Banner

Similar Questions

Explore conceptually related problems

If overline(a) is perpendicular to overline(b) and overline(c), |overline(a)|=2, |overline(b)=3, |overline(c)|=4 and the angle between overline(b) and overline(c) is (2pi)/(3) , then |[[overline(a), overline(b), overline(c)]]|=

If overline(c)=2overline(a)+5overline(b), |overline(a)|=a, |overline(b)|=b and the angle between overline(a) and overline(b) is (pi)/(3) , then c^(2) =

The volume of paralleloP1ped with vector overline(a)+2overline(b)+overline(c), overline(a)-overline(b) and overline(a)-overline(b)-overline(c) is equal to k[[overline(a), overline(b), overline(c)]] . Then k=

If the angle between overline(a) and overline(b) is (pi)/(6) and overline(c)=overline(a)+3overline(b) , then c^(2)=

If the angle between overline(b) and overline(c) is (pi)/(3) and overline(a)=overline(b)+4overline(c) , then a^(2)=

If overline(c)=5overline(a)-4overline(b) and overline(a) is perpendicular to overline(b) , then c^(2)=

If overline(b)=overline(a)-4overline(c) and angle between overline(a) and overline(c) is (pi)/(6) and a=2, c=1 then b^(2)=

[[overline(a), overline(b), overline(c)]] is the scalar triple product of three vectors overline(a), overline(b), overline(c) then [[overline(a), overline(b), overline(c)]]=

If |overline(a)|=5, |overline(b)|=3, |overline(c)|=4 and |overline(a)| is perpendicular to |overline(b)| and |overline(c)| such that the angle between |overline(b)| and |overline(c)| is (5pi)/(6) , then [[overline(a),overline(b), overline(c)]]=