Home
Class 12
MATHS
Let omega= e^((ipi)/3) and a, b, c, x,...

Let ` omega= e^((ipi)/3) and a, b, c, x, y, z` be non-zero complex numbers such that `a+b+c = x, a + bomega + comega^2 = y, a + bomega^2 + comega = z`.Then, the value of `(|x|^2+|y|^2|+|y|^2)/(|a|^2+|b|^2+|c|^2)`

Promotional Banner

Similar Questions

Explore conceptually related problems

Let omega= e^((ipi)/3) and a, b, c, x, y, z be non-zero complex numbers such that a+b+c = x, a + bomega + comega^2 = y, a + bomega^2 + comega = z .Then, the value of (|x|^2+|y|^2|+|z|^2)/(|a|^2+|b|^2+|c|^2)

Let omega=e^((i pi)/(3)) and a,b,c,x,y,z be non-zero complex numbers such that a+b+c=x,a+b omega+c omega^(2)=y,a+b omega^(2)+c omega=z Then,the value of (|x|^(2)+|y|^(2)|+|y|^(2))/(|a|^(2)+|b|^(2)+|c|^(2))

Let omega =e^(ipi/3) and a,b,c,x,y,z be nonzero complex number such that a+b+c=x, a+bomega+comega^2=y, a+bomega^2+comega=z . Then the value of (|x|^2+|y|^2+|z|^2)/(|a|^2+|b|^2+|c|^2) is

Let omega=e^(ipi/3) ,and a,b,c,x,y,z be non zero complex numbers such that a+b+c=x a+bomega+comega^2=y a+bomega^2+comega=z then the value of (absx^2+absy^2+absz^2)/(absa^2+absb^2+absc^2) is

If x=a+b, y=a omega+b omega^2,z=a omega^2+bomega show that xyz =a^3+b^3

If x=a+b,y=aomega+bomega^(2),z=aomega^(2)+bomega then xyz

If omega is a complex cube root of unity, then show that: (a + bomega + comega^2) / (c + aomega + bomega^2) = omega^2