Home
Class 12
MATHS
The curves ax^2+by^2=1 and Ax^2+By^2=1 i...

The curves `ax^2+by^2=1` and `Ax^2+By^2=1` intersect orthogonally, then

Promotional Banner

Similar Questions

Explore conceptually related problems

If two curves ax^2 +by^2=1 and a'x^2+b'y^2=1 intersect orthogonally,then show that 1/a-1/b=1/[a']-1/[b']

If the curves ax^2 + by^2 =1 and a'x^2 +b'y^2 =1 intersect orthogonally, prove that: 1/a-1/a'=1/b-1/b'

The curves ax^(2)+by^(2)=1 and Ax^(2)+B y^(2) =1 intersect orthogonally, then

Show the condition that the curves a x^2+b y^2=1 and Ax^2+By^2=1 should intersect orthogonally is 1/a-1/b=1/A-1/Bdot

If the curve ax^(2)+by^(2)=1 and a'x^(2)+b'y^(2)=1 intersect orthogonally, then

If two curves ax^(2)+by^(2)=1 and a'x^(2)+b'y^(2)=1 intersect orthogonally,then show that (1)/(a)-(1)/(b)=(1)/(a')-(1)/(b')

Show that curves ax^2+by^2=1 and cx^2+dy^2=1 intersect orthogonally if , 1/a-1/b=1/c-1/d

Show that it the curves ax^(2) +by^(2)=1 " and " Ax^(2) +By^(2) =1 are orthogonal then ab(A-B)=AB(a-b).

If the curves 2x^(2)+3y^(2)=6 and ax^(2)+4y^(2)=4 intersect orthogonally, then a =