Home
Class 12
MATHS
Let I=int((pi)/(4))^((pi)/(3))(sinx)/(x)...

Let `I=int_((pi)/(4))^((pi)/(3))(sinx)/(x)dx`. Then

Promotional Banner

Similar Questions

Explore conceptually related problems

Let I=int_(0)^((pi)/(2))((sin x)/(x))dx, then

int_(pi//4)^(3pi//4)(xsinx)/(1+sinx)dx

int_(0)^((pi)/(4))(dx)/(1+sinx)

Evaluate : int_((pi)/(4))^((3pi)/(4))(x)/(1+sinx)dx

The value of the integral int_((pi)/(6))^((pi)/(3))((sinx-xcosx))/(x(x+sinx))dx is equal to-

Find int_((-pi)/(4))^(pi/4)|sinx|dx

L e tI_1=int_(pi/6)^(pi/3)(sinx)/x dx ,I_2=int_(pi/6)^(pi/3)(("sin"(sinx))/(sinx))dx ,I_3=int_(pi/6)^(pi/3)(sin(tanx)/(tanx))dx Then arrange in the decreasing order in which values I_1,I_2,I_3 lie.

int_(pi/4)^((3pi)/4) |sinx| dx =

int_(-pi//4)^(pi//4)(dx)/((1+sinx))