Home
Class 12
MATHS
(2^(x-1)*4^(x+1))/(8^(x-1))=16...

`(2^(x-1)*4^(x+1))/(8^(x-1))=16`

Promotional Banner

Similar Questions

Explore conceptually related problems

Solve (2^(x)+2^(-x))/(2^(x)-2^(-x))=(16^(1/x)+16^(-1/x))/(16^(1/x)-16^(-1/x))

If (x^(4))/((x-1)(x+2))=(1)/(3(x-1))-(16)/(3(x+2))+x^(2)-x+k then k=

If x^(4)/((x-1)(x+2))=1/(3(x-1))-16/(3(x+2))+x^(2)-x+k , then k =

4^(2x-1)-16^(x-1)=384

underset(x to 1//2)lim {(8x-3)/(2x-1)-(4x^(2)+1)/(4x^(2)-1)}=

lim_(x to 1/2)((8x-3)/(2x-1)-(4x^(2)+1)/(4x^(2)-1)) .

The expression (1)/(x-1)-(1)/(x+1)-(2)/(x^(2)+1)-(4)/(x^(4)+1) is equal to (8)/(x^(8)+1)( b) (8)/(x^(8)-1)( c) (8)/(x^(7)-1) (d) (8)/(x^(7)+1)