Home
Class 12
MATHS
If for the matrix A, A^(5)=I, then A^(-1...

If for the matrix A, `A^(5)=I`, then `A^(-1)=`

Promotional Banner

Similar Questions

Explore conceptually related problems

If for the matrix A, A^(3)=I , then A^(-1)=

If for matrix A, A^(3)=I then A^(-1)=

If for a matrix A , A^5=I , then A^-1=

For the matrix A, if A^(3)=I , then find A^(-1) .

If for a matrix A, A= A^(-1) , then show that A(A^(3)+I)=A+I (I is the unit matrix).

If A is a non-singular square matrix such that A^(2)-7A+5I=0, then A^(-1)

If A is a square matrix satisfying the equation A^(2)-4A-5I=0 , then A^(-1)=

If A is non-singular matrix and (A+I)(A-I) = 0 then A+A^(-1)= . . .

A is a square matrix satisfying the equation A^(2)-4A-5I=O . Then A^(-1)=

If a matrix A is such that 3A^3 +2A^2+5A+I= 0 , then A^(-1) is equal to