Home
Class 12
MATHS
" 25.If "vec PO+vec OQ=vec QO+vec OR," s...

" 25.If "vec PO+vec OQ=vec QO+vec OR," show that the points "P,Q,R" are collinear."

Promotional Banner

Similar Questions

Explore conceptually related problems

If vec PO+vec OQ=vec QO+vec OR, show that the point,P,Q,R are collinear.

If vec P O+ vec O Q= vec Q O+ vec O R , show that the point, P ,Q ,R are collinear.

If vec(PO)+vec(OQ)=vec(QO)+vec(OR) , prove that the points P, Q,R, are collinear.

If vec(PO) + vec(OQ) = vec(QO) + vec(OR) prove that the points P,Q,R are collinear .

If vec(AO)+vec(OB)=vec(BO)+vec(OC) , show that the points A, B and C are collinear.

Four points P,Q,R and S with respective position vectors vec p , vec q , vec r and vec s are such that 5 vec p - 2vec q+ 6 vec r - 9 vec s= vec 0 . Show that the four points are coplanar and find the P.V. of the point in which the lines PQ and RS intersect.

if vec(P) xx vec(R ) = vec(Q) xx vec(R ) , then

If vec p xxvec q=vec r and vec p*vec q=c, then vec q is

Let OP,OQ, OR are three edges of a regular tetrahedron of edge length a . If vec p , vec q and vec r are the position vectors of the points P,Q and R & O is the origin then |vec p timesvec q+vec q timesvec r+vec r timesvec p| is equal to