Home
Class 12
MATHS
" flines "(x-1)/(-3)=(y-2)/(2k)=(z-3)/(2...

" flines "(x-1)/(-3)=(y-2)/(2k)=(z-3)/(2)" and "(x-1)/(3k)=(y-5)/(1)=(z-6)/(-5)" are mutually perpendicular,then "k" is equa "

Promotional Banner

Similar Questions

Explore conceptually related problems

If the lines (x-1)/(-3)=(y-2)/(2k) =(z-3)/2 and (x-1)/(3k) =(y-5)/1=(z-6)/(-5) are mutually perpendicular then k is equal to

If the line (x-1)/(-3) = (y-2)/(2k) = (z-3)/( 2) and (x-1)/( 3k) = (y-5)/(1) = (6-z)/(5) are mutually perpendicular, then k is equal to

If the two lines (x-1)/(-3) = (y-2)/(2m) = (z-3)/2 and (x-1)/(3m) = (y-5)/1 = (z-6)/(-5) are mutually perpendicular , then : m

If the lines (x-1)/(-3)=(y-2)/(2k)=(z-3)/(2) and (x-1)/(3k)=(y-1)/(1)=(z-6)/(-5) are perpendicular, find the value of k.

If the lines (x-1)/(-3)=(y-2)/(2k)=(z-3)/(2) and (x-1)/(3k)=(y-1)/(1)=(z-6)/(-5) are perpendicular, find the value of k.

If the lines (x-1)/(-3)=(y-2)/(2k)=(z-3)/(2)(x-1)/(3k)=(y-1)/(1)=(z-6)/(-5) are perpendicular,find the value of k.

If the lines (x-1)/(-3)=(y-2)/(2k)=(z-3)/2 and (x-1)/(3k)=(y-1)/1=(z-6)/(-5) are perpendicular, find the value of k.

If the lines (x-1)/(-3)=(y-2)/(2k)=(z-3)/2 and (x-1)/(3k)=(y-1)/1=(z-6)/(-3) are perpendicular, find the value of k.