Home
Class 9
MATHS
Find the value of: 1/(1+sqrt2)+1/(sqrt2+...

Find the value of: `1/(1+sqrt2)+1/(sqrt2+sqrt3)+1/(sqrt3+sqrt4)+...1/(sqrt99+sqrt100)`

Promotional Banner

Similar Questions

Explore conceptually related problems

1/(sqrt3 + sqrt2) + 1/(sqrt3 -sqrt2)=

Prove that: 1/(1+sqrt2)+1/(sqrt2+sqrt3)+1/(sqrt3+sqrt4)+1/(sqrt4+sqrt5)

Value of 1/(sqrt2+1)+1/(sqrt3+sqrt2)+1/(sqrt4+sqrt3)+....+1/(sqrt100+sqrt99) is

1/(1-sqrt(2))+ 1/(sqrt(2)-sqrt(3))+1/(sqrt(3)-sqrt(4))+..........+1/(sqrt(8)-sqrt(9))

Evaluate 1/(1+sqrt(2))+1/(sqrt(2)+sqrt(3))+1/(sqrt(3)+sqrt(4))

The value of (1-sqrt2) + (sqrt2-sqrt3)+(sqrt3-sqrt4)+ ............ + (sqrt15-sqrt16) is

(1)/(sqrt(2)+sqrt(3))+(1)/(sqrt(3)+sqrt(4))