Home
Class 12
MATHS
Three points A(x1 , y1), B (x2, y2) and ...

Three points `A(x_1 , y_1), B (x_2, y_2) and C(x, y)` are collinear. Prove that: `(x-x_1) (y_2 - y_1) = (x_2 - x_1) (y-y_1)`.

Promotional Banner

Similar Questions

Explore conceptually related problems

Three points (x_(1),y_(1)),B(x_(2),y_(2)) and C(x,y) are collinear.Prove that (x-x_(1))(y_(2)-y_(1))=(x_(2)-x_(1))(y-y_(1))

If the points (x_1,y_1), (x_2,y_2) and (x_1 + x_2, y_1+y_2) are collinear, prove that x_1y_2 = x_2y_1

If the points (x_1, y_1), (x_2, y_2) and (x_3, y_3) be collinear, show that: (y_2 - y_3)/(x_2 x_3) + (y_3 - y_1)/(x_3 x_2) + (y_1 - y_2)/(x_1 x_2) = 0

If the points (x_1, y_1),(x_2,y_2), and (x_3, y_3) are collinear show that (y_2-y_3)/(x_2x_3)+(y_3-y_1)/(x_3x_1)+(y_1-y_2)/(x_1x_2)=0

If the points (x_1, y_1),(x_2,y_2), and (x_3, y_3) are collinear show that (y_2-y_3)/(x_2x_3)+(y_3-y_1)/(x_3x_1)+(y_1-y_2)/(x_1x_2)=0

If the points (x_1, y_1),(x_2,y_2), and (x_3, y_3) are collinear show that (y_2-y_3)/(x_2x_3)+(y_3-y_1)/(x_3x_1)+(y_1-y_2)/(x_1x_2)=0

If the points (x_1, y_1),(x_2,y_2), and (x_3, y_3) are collinear show that (y_2-y_3)/(x^2x_3)+(y_3-y_1)/(x_3x_1)+(y_1-y_2)/(x_1x_2)=0

If the points (x_1, y_1),(x_2,y_2), and (x_3, y_3) are collinear show that (y_2-y_3)/(x_2x_3)+(y_3-y_1)/(x_3x_1)+(y_1-y_2)/(x_1x_2)=0

Three points P (h, k), Q(x_1, y_1) and R (x_2,y_2) lie on a line. Show that : (h-x_1)(y_2-y_1)= (k-y_1)(x_2-x_1) .

If the points A(x_1,y_1), B(x_2,y_2) and C(x_3,y_3) are collinear, then area of triangle ABC is: