Home
Class 12
MATHS
"F i n d"int[log(logx)+1/((logx)^2)]dx F...

`"F i n d"int[log(logx)+1/((logx)^2)]dx` Find log (log x)+ |dx 2 (log x)

Text Solution

Verified by Experts

`int(log(logx)+(1)/((log x)^(2)))dx`
`=int1*log(logx)dx+int(dx)/((log x)^(2))`
`=xlog(logx)-int(1)/(xlog x)xdx+int(dx)/((log x)^(2))+c`
`=xlog(logx)-int(log x)^(-1)dx+int(dx)/((log x)^(2))+c`
`=xlog(logx)-[x(log x)^(-1)+int(log x)^(-2)dx]+int(log x)^(-2)dx+c`
`=xlog(logx)-x(log x)^(-1)+c`
Promotional Banner

Similar Questions

Explore conceptually related problems

Find int[log(logx)+1/((logx)^2)]dx

Find int[log(logx)+1/((logx)^2)]dx

Find int [log(logx)+(1)/((logx)^(2))]dx

Find : int{log(logx)+(1)/((logx)^(2))}dx .

int(log(logx))/(x.logx)dx=

int(log(logx))/(x.logx)dx=

int(log(x//e))/((logx)^(2))dx=

int (log x)/(1+logx)^2 dx