Home
Class 11
MATHS
If function f and g given by f (x)=log...

If function f and g given by
`f (x)=log(x-1)-log(x-2)and g(x)=log((x-1)/(x-2))"are equal"`
then x lies in the interval.

Promotional Banner

Similar Questions

Explore conceptually related problems

The function f(x) =log(x-1)-log(x-2) and g(x) =log((x-1)/(x-2)) are identical on

If the function f(x)=log(x-2)-log(x-3) and g(x)=log((x-2)/(x-3)) are identical, then

If the function f(x)=log(x-2)-log(x-3) and g(x)=log((x-2)/(x-3)) are identical, then

Let f(x) = ln(x-1)(x-3) and g(x) = ln(x-1) + ln(x-3) then,

If f(x)=log(x-5)(2-x), g(x)=log(x-5), h(x)=log(2-x) then

If the function f(x) defined by f(x)=(log(1+3x)-log(1-2x))/(x),x!=0 and k

Show that functions f and g defined by f(x)=2 log x and g(x) =log x^2 are not equal even though log x^2 =2 log x.

Given f(x)=log((1+x)/(1-x)) and g(x) = (3x+x^(3))/(1+3x^(2)) , then fog(x) is

If f(x)=log((1+x)/(1-x)) , then f((2x)/(1+x^2)) equal to: