Home
Class 12
MATHS
underset(n to oo)lim (1^(3)+2^(3)+3^(3)+...

`underset(n to oo)lim (1^(3)+2^(3)+3^(3)+...+n^(3))/(n^(4))=`

Promotional Banner

Similar Questions

Explore conceptually related problems

underset(n to oo)lim (1^(2)+2^(2)+3^(2)+...+n^(2))/(n^(3))=

Prove that underset(nrarroo)"lim"(1^(3)+2^(3)+3^(3)+...+n^(3))/(n^(4))=(1)/(4)

underset(n to oo)(Lt) (3^(3)+6^(3)+...+(3n)^(3))/(3n^(4))=

underset(n to oo)lim (n(1^(3)+2^(3)+...+n^(3))^(2))/((1^(2)+2^(2)+...+n^(2))^(3))=

underset(n to oo)lim (2^(n)-1)/(3^(n)+1)=

underset(n to oo)lim (5^(n)+1)/(3^(n)-1)=

Value of lim_ (n rarr oo) (1 ^ (3) + 2 ^ (3) + 3 ^ (3) ... + n ^ (3)) / (n ^ (4))

Find underset(n to oo)lim ((2n^(3))/(2n^(2)+3)+(1-5n^(2))/(5n+1))

underset(n to oo)lim (1+2+3+...+n)/(n^(2))=

underset(n to oo)lim (1+3+6+...+n(n+1)//2)/(n^(3))=