Home
Class 12
MATHS
If int (dx)/((x^(2)+a^(2))^(2))=(1)/(ka^...

If `int (dx)/((x^(2)+a^(2))^(2))=(1)/(ka^(2)){(x)/(x^(2)+a^(2))+(1)/(a) tan^(-1). (x)/(a)}+C`. Then the value of k, is

Promotional Banner

Similar Questions

Explore conceptually related problems

int(2x^(2)+a^(2))/(x^(2)(x^(2)+a^(2)))dx=(k)/(x)+(1)/(a)Tan^(-1)((x)/(a))+c then k

If (d)/(dx)(tan^(-1)x)^(2)=k tan^(-1)x*(1)/(1+x^(2)) , then the value of k is -

If int (2x^(2)+a^(2))/(x^(2)(x^(2)+a^(2)))dx=(k)/(x)+(1)/(a)"Tan"^(-1)(x)/(a)+c Then k=

If int_((1)/(2))^(2)(1)/(x)cos ec^(101)(x-(1)/(x))dx=k then the value of k is:

If int sqrt(a^(2)-x^(2))dx=(x)/(2)sqrt(a^(2)-x^(2))+k sin^(-1)(x/a)+c , then the value of k is-

int(x^(2)tan^(-1)x)/(1+x^(2))dx

If int (2x^(2)+3)/((x^(2)-1)(x^(2)+4)) dx = a log((x-1)/(x+1)) +b tan^(-1) (x/2) +c then the values of a and b are

If int_(1/2)^2 1/x cosec^(101)(x-1/x)dx=k then the value of k is :