Home
Class 9
MATHS
Solve for x, y , z. log2 x + log4 y ...

Solve for `x, y , z`.
`log_2 x + log_4 y + log_4 z =2`
`log_3 y + log_9 z + log_9 x =2`
`log_4 z + log_16 x + log_16 y =2`

Text Solution

Verified by Experts

let `log_ab= n`
then , `b=a^n, b^(1/k) = (a^(1/k))^n`
now, `log_(a^(1/k))(b^(1/k))= n = log_ab`
`log_2x + log_sqrt4 y ^(1/2) + log_sqrt4 z^(1/2) = 2`
`log_2 x + log_2 y^(1/2) + log_2z^(1/2) = 2 `
`log_2 xy^(1/2)z^(1/2) = 2`
`xy^(1/2)z^(1/2) = 2^2`
`x^2yz = 4^2= 16` eqn1
...
Promotional Banner

Similar Questions

Explore conceptually related problems

If log_2 x+log_4 y+log_4 z=2 then x^2yz=

Delta=|[log x ,log y, log z],[log 2 x, log 2 y, log 2 z],[log 3 x, log 3 y, log 3 z ]|=

If log x : log y : log z =(y - z): (z -x): (x - y), then

Prove that : log _ y^(x) . log _z^(y) . log _a^(z) = log _a ^(x)

If x, y, z being positive |[1, log _x y,log _x z],[log _y x,1,log _y z],[log _z x,log _z y, 1]|=

If "log"_(y) x = "log"_(z)y = "log"_(x)z , then

If "log"_(y) x = "log"_(z)y = "log"_(x)z , then