Home
Class 12
MATHS
Given a real valued function f such that...

Given a real valued function `f` such that `f(x)={(tan^2{x})/((x^2-[x]^2))for\ x >0 1\ for\ x=0{x}cot{x}for\ x<0` Where `[x]` is the integral part and `{x}` is the fractional part of `x` then `(lim)_(x->0^+)f(x)=1` b. `(lim)_(x-0^-)f(x)=cot1` c. `cot^(-1)((lim)_(x->0^-)f(x))\ ^2=1` d. `tan^(-1)((lim)_(x->0^+)f(x))=pi/4`

Promotional Banner

Similar Questions

Explore conceptually related problems

Given a real valued function f such that f(x)={(tan^2{x})/((x^2-[x]^2))for\ x >0 1\ for\ x=0{x}cot{x}for\ x 0^+)f(x)=1 b. (lim)_(x-0^-)f(x)=cot1 c. cot^(-1)((lim)_(x->0^-)f(x))\ ^2=1 d. tan^(-1)((lim)_(x->0^+)f(x))=pi/4

Given a real-valued function f such that f(x)={(tan^2{x})/((x^2-[x]^2) sqrt({x}cot{x}),for x 0 Where [x] is the integral part and {x} is the fractional part of x , then ("lim")_(xvec0^+)f(x)=1 , ("lim")_(xvec0^-)f(x)=cot1 , cot^(-1)(("lim")_(xvec0^-)f(x))^2=1 , tan^(-1)(("lim")_(xvec0^+)f(x))=pi/4

Given a real-valued function f such that f(x)={(tan^2{x})/((x^2-[x]^2) sqrt({x}cot{x}),for x 0 Where [x] is the integral part and {x} is the fractional part of x , then ("lim")_(xvec0^+)f(x)=1 , ("lim")_(xvec0^-)f(x)=cot1 , cot^(-1)(("lim")_(xvec0^-)f(x))^2=1 , tan^(-1)(("lim")_(xvec0^+)f(x))=pi/4

let f(x)=(tan^(2){x})/(x^(2)-[x]^(2)),x>0 and f(x)=0,x=0 and f(x)=sqrt({x}cot{x}),x<0 then

If lim_(xrarr0)(f(x))/(x^2)=k ne 0 then lim_(xrarr1)f(x) =……….

If the function f(x) satisfies (lim)_(x->1)(f(x)-2)/(x^2-1)=pi, evaluate (lim)_(x->1)f(x)

If f'(x)=f(x) and f(0)=1 then lim_(x rarr0)(f(x)-1)/(x)=

Calculate lim_(x to 0) f(x) , where f(x) = (1)/(x^(2)) for x gt 0

Calculate lim_(x to 0) f(x) , where f(x) = (1)/(x^(2)) for x gt 0

A function f(x) is such that f(x+1)=sqrt(f(x)+2) , where x in I^+ uu {0} and f(0)=0 then The value of lim_(x rarroo) f(x) is