Home
Class 12
MATHS
सिद्ध करे कि : sin^(-1)x + sin^(-1) y...

सिद्ध करे कि :
`sin^(-1)x + sin^(-1) y = cos^(-1) (sqrt(1-x^(2)) sqrt(1-y^(2)) - xy)`
जहाँ `x in[0,1], y in[0,1]`

Promotional Banner

Similar Questions

Explore conceptually related problems

sin^(- 1)x+sin^(- 1)y=cos^(- 1) (sqrt(1-x^2) sqrt(1-y^2)-xy) if x in [0,1], y in [0,1]

sin^(-1)x+sin^(-1)y=cos^(-1)(sqrt(1-x^(2))sqrt(1-y^(2))-xy) if x in[0,1],y in[0,1]

sin^(-1)x+sin^(-1)y=cos^(-1)""{sqrt((1-x^(2))(1-y^(2)))-xy}

y = sin^(-1)(x/sqrt(1+x^2)) + cos^(-1)(1/sqrt(1+x^2))

If sin^(-1) x + sin^(-1) y = pi/2 , prove that x sqrt(1-x^2) + y sqrt(1-y^2) =1 .

Prove the following: sin^-1x-sin^-1y = sin^-1[x(sqrt(1-y^2))-y(sqrt(1-x^2))]

If sin^(-1) x + sin^(-1) y = pi/2 , prove that x sqrt(1-y^2) + y sqrt(1-x^2) =1 .

(dy)/(dx) if y=sin^(-1)x+sin^(-1)sqrt(1-x^(2)),x is 0 to 1

If y = (sin^(-1) x)/(sqrt(1-x^2)) show that (1-x^2) y_2 - 3xy_1 - y =0