Home
Class 12
MATHS
If omega be an imaginary cube root or un...

If `omega` be an imaginary cube root or unity, prove that
`(1)/(1+2 omega)-(1)/(1+ omega)+(1)/(2+omega)=0`

Promotional Banner

Similar Questions

Explore conceptually related problems

If omega be an imaginaryb cube root of unity,then prove that, 1/(1+2omega)+1/(2+omega)-1/(1+omega)=0

If omega is an imaginary cube root of unity, then the value of (1)/(1+2omega)+(1)/(2+omega)-(1)/(1+omega) is :

If omega be an imaginary cube root of unity, prove that (1-omega)(1-omega^2)(1-omega^4)(1-omega^8)=9

If omega be an imaginary cube root of unity, prove that (1-omega+omega^2)(1+omega-omega^2)=4

If w be an imaginary cube root of unity,show that :(1)/(1+2w)+(1)/(2+omega)-(1)/(1+omega)=0

If omega be an imaginary cube root of unity, show that: 1/(1+2omega)+ 1/(2+omega) - 1/(1+omega)=0 .

If omega be an imaginary cube root of unity, show that: 1/(1+2omega)+ 1/(2+omega) - 1/(1+omega)=0 .

If omega be an imaginary cube root or unity, prove that (1- omega+ omega^(2)) (1-omega^(2)+ omega^(4)) (1- omega^(4)+ omega ^(8))..."to" 2 n th factor =2^(2n)

If 1, omega , omega^2 are cube roots of unity prove that (1 / (1 + 2omega)) - (1 / (1 + omega)) + (1 / (2 + omega)) = 0

If omega be a complex cube root of unity then the value of (1)/(1+2 omega)-(1)/(1+omega)+(1)/(2+omega) is