Home
Class 12
MATHS
int(0)^(a)(1)/(x+sqrt(a^(2)-x^(2)))dx=(p...

int_(0)^(a)(1)/(x+sqrt(a^(2)-x^(2)))dx=(pi)/(4)

Promotional Banner

Similar Questions

Explore conceptually related problems

int_(0)^(a)(dx)/(x+sqrt(a^(2)-x^(2)))=(pi)/(4)

int_(0)^(a)(dx)/(x+sqrt(a^(2)-x^(2)))=(pi)/(4)

Prove that (pi)/(6)

The value of the expression (int_(0)^(a)x^(4)sqrt(a^(2)-x^(2))dx)/(int_(0)^(a)x^(2)sqrt(a^(2)-x^(2))dx)=

int_(0)^(1)x.sqrt((1-x^(2))/(1+x^(2)))dx=(pi-2)/(4)

(1) int_(-1)^(0)(x)/(sqrt(x^(2)+4))*dx

" (b) "int_(0)^(a)sqrt((a-x)/(a+x))dx=a((pi)/(2)-1)

I : int_(0)^(a)sqrt(a^2-x^(2))dx=pia^(2) II : int_(0)^(pi//4)(tan^(4)x+tan^(2)x)dx=1

Statement-1: int_(0)^(pi//2) (1)/(1+tan^(3)x)dx=(pi)/(4) Statement-2: int_(0)^(a) f(x)dx=int_(0)^(a) f(a+x)dx

Statement-1: int_(0)^(pi//2) (1)/(1+tan^(3)x)dx=(pi)/(4) Statement-2: int_(0)^(a) f(x)dx=int_(0)^(a) f(a+x)dx