Home
Class 12
MATHS
Consider the circles C(1)-=x^(2)+y^(2)-2...

Consider the circles `C_(1)-=x^(2)+y^(2)-2x-4y-4=0andC_(2)-=x^(2)+y^(2)+2x+4y+4=0` and the line `L-=x+2y+2=0` then

Promotional Banner

Similar Questions

Explore conceptually related problems

The circles x^(2)+y^(2)-2x-4y+1=0 and x^(2)+y^(2)+4y-1 =0

Two circles x^(2) + y^(2) - 2x - 4y = 0 and x^(2) + y^(2) - 8y - 4 = 0

The circles x^(2)+y^(2)-2x-4y+1=0 and x^(2)+y^(2)+4y+4x-1 =0

Number of common tangents to the circles C_(1):x ^(2) + y ^(2) - 6x - 4y -12=0 and C _(2) : x ^(2) + y ^(2) + 6x + 4y+ 4=0 is

The point of tangency of the circles x^(2)+y^(2)-2x-4y=0 and x^(2)+y^(2)-8y-4=0 is

A circle through the common points of the circles x^(2) + y^(2) - 2x - 4y + 1 = 0 and x^(2) + y^(2) - 2x - 6y + 1 = 0 has its centre on the line 4x - 7y - 19 = 0 . Find the centre and radius of the circle .

The circle x^(2)+y^(2)-2x+4y+4=0,x^(2)+y^(2)+4x-2y+1=0 are

Circles x^(2)+y^(2)=4 and x^(2)+y^(2)-2x-4y+3=0