Home
Class 12
MATHS
If x=10 sum(r=3) ^(100) (1)/((r ^(2) -4)...

If `x=10 sum_(r=3) ^(100) (1)/((r ^(2) -4)), `then `[x]=`
(where [.] denotes gratest integer function)

Promotional Banner

Similar Questions

Explore conceptually related problems

Solve in R: x^2+ 2[x] = 3x where [.] denotes greatest integer function.

If f(x) =2 [x]+ cos x , then f: R ->R is: (where [ ] denotes greatest integer function)

If f(x)=2[x]+cos x, then f:R rarr R is: (where [] denotes greatest integer function)

If f(x) = [x] - [x/4], x in R where [x] denotes the greatest integer function, then

Let 2(1+x^(3))^(100)=sum_(r=0)^(300) {a_(r)x^(r)-cos.(rpi)/(2)},"if"sum_(r=0)^(150) a_(2r)=s , then s-2^([log_(2)s] is (where lfloor.rfloor denotes greatest integer function)

Let 2(1+x^(3))^(100)=sum_(r=0)^(300) {a_(r)x^(r)-cos.(rpi)/(2)},"if"sum_(r=0)^(150) a_(2r)=s , then s-2^([log_(2)s] is (where lfloor.rfloor denotes greatest integer function)

Let f(x)={{:(,sum_(r=0)^(x^(2)[(1)/(|x|)])r,x ne 0),(,k,x=0):} where [.] denotes the greatest integer function. The value of k for which is continuous at x=0, is

Let f(x)={{:(,sum_(r=0)^(x^(2)[(1)/(|x|)])r,x ne 0),(,k,x=0):} where [.] denotes the greatest integer function. The value of k for which is continuous at x=0, is

Evaluate lim_(n rarr oo)[sum_(r=1)^(n)(1)/(2^(r))], where [.] denotes the greatest integer function.