Home
Class 12
MATHS
[" If "x=e^(" coset ")" and "y=e^(" sin ...

[" If "x=e^(" coset ")" and "y=e^(" sin "2t)" the prove that "],[(dy)/(dx)=(y log x)/(x log y)]

Promotional Banner

Similar Questions

Explore conceptually related problems

If x,=e^(cos2t) and y=e^(sin2t), prove that (dy)/(dx),=-(y log x)/(x log y)

Find (dy)/(dx) : x= e^(cos 2t) and y= e^(sin 2t) show that, (dy)/(dx)= (-y log x)/(x log y)

If x=e^(x/y), prove that (dy)/(dx)=(x-y)/(x log x)

If y^(x)= e^(y-x) , then prove that (dy)/(dx)= ((1+ log y)^(2))/(log y)

If y^(x) = e^(y -x) , prove that (dy)/(dx) = ((1 + log y)^2)/(log y) .

"If "x^(y)=e^(x-y)," prove that "(dy)/(dx)=(log x)/((1+log x)^(2)).

"If "x^(y)=e^(x-y)," prove that "(dy)/(dx)=(log x)/((1+log x)^(2)).

If y^(x)=e^(y-x) , then prove that (dy)/(dx)=((1+log y)^(2))/(logy) .