Home
Class 11
MATHS
Conjugate of a complex no and its proper...

Conjugate of a complex no and its properties. If `z, z_1, z_2` are complex no.; then :- (i) `bar(barz)=z` (ii)`z+barz=2Re(z)`(iii)`z-barz=2i Im(z)` (iv)`z=barz hArr z` is purely real (v) `z+barz=0implies` z is purely imaginary (vi)`zbarz=[Re(z)]^2+[Im(z)]^2`

Promotional Banner

Similar Questions

Explore conceptually related problems

if z=3 -2i, then verify that (i) z + barz = 2Rez (ii) z - barz = 2ilm z

if z=3 -2i, then verify that (i) z + barz = 2Rez (ii) z - barz = 2ilm z

For all z in C, prove that (i) (1)/(2)(z+bar(z))=Re(z), (ii) (1)/(2i)(z-bar(z))=Im(z), (iii) z bar(z)=|z|^(2), (iv) z+bar(z))"is real", (v) (z-bar(z))"is 0 or imaginary".

If |z/| barz |- barz |=1+|z|, then prove that z is a purely imaginary number.

If |z/| barz |- barz |=1+|z|, then prove that z is a purely imaginary number.

If |z/| barz |- barz |=1+|z|, then prove that z is a purely imaginary number.

If z_1 , and z_2 be two complex numbers prove that bar(z_1+-z_2)=barz_1+-barz_2

If z_1 , and z_2 be two complex numbers prove that z_1barz_1=|z_1|^2

Find the complex number z if z^2+barz =0

Statement - I : If z = barz then z is purely imaginary Statement- II : If z = -barz then z is purely real