Home
Class 12
MATHS
Lagrange identity: If two vector veca; v...

Lagrange identity: If two vector `veca; vecb` are any two vectors `|vecaxx vecb|^2 =( |veca|^2 |vecb|^2 - (veca . vecb)^2)`

Promotional Banner

Similar Questions

Explore conceptually related problems

If veca" and "vecb are any two vectors, then (veca xx vecb)^(2)= |veca|^(2)|vecb|^(2)-(veca* vecb)^(2) .

If veca,vecb are any two vectors, then prove that |vecaxxvecb|^(2)+(veca.vecb)^(2)=|veca|^(2)|vecb|^(2)

For any two vectors veca and vecb|veca X vecb|^(2)+|veca.vecb| is:

If veca and vecb are non - zero vectors such that |veca + vecb| = |veca - 2vecb| then

If veca and vecb are non - zero vectors such that |veca + vecb| = |veca - 2vecb| then

If veca and vecb are non - zero vectors such that |veca + vecb| = |veca - 2vecb| then

If veca and vecb are non - zero vectors such that |veca + vecb| = |veca - 2vecb| then

If veca" and "vecb are any two vectors such |veca+vecb|=|veca-vecb| find the angle between veca" and "vecb