Home
Class 8
MATHS
" (vi) "2^(5x+4)+2^(9)=2^(10)...

" (vi) "2^(5x+4)+2^(9)=2^(10)

Promotional Banner

Similar Questions

Explore conceptually related problems

Expand: (i) (8a + 3b)^(2) (ii) (7x + 2y)^(2) (iii) (5x + 11)^(2) (iv) ((a)/(2) + (2)/(a))^(2) (v) ((3x)/(4) + (2y)/(9))^(2) (vi) (9x - 10)^(2) (vii) (x^(2) y - yz^(2))^(2) (viii) ((x)/(y) - (y)/(x))^(2) (ix) (3m - (4)/(5) n)^(2)

Add: (i) 3x, 7x (ii) 7y, -9y (iii) 2xy, 5xy, -xy (iv) 3x, 2y (v) 2x^(2), -3x^(2), 7x^(2) (vi) 7xyz, -5xyz, 9xyz, - 8xyz (vii) 6a^(3) , - 4a^(3), 10 a^(3), - 8a^(3) (viii) x^(2) - a^(2), -5x^(2) + 2a^(2), -4x^(2) + 4a^(2)

Factorise : (viii) 5x^(2) - (20x^4)/( 9)

Find the root common the system of equations log_(10)(3^(x)-2^(4-x))=2+1/4log_(10)16-x/2 log_(10)4 and log_(3) (3x^(2-13x+58)+(2)/(9))=log_(5)(0.2)

Show that: (x^(2)+y^(2))^(5)=(x^(5)-10x^(3)y^(2)+5xy^(4))^(2)+(5x^(4)-10x^(2)y^(3)+y^(5))^(2)

Solve x ^(5) - 5x ^(4) + 9x ^(3) - 9x ^(2) + 5x -1 =0.

Simplify: 9x^(4)(2x^(3)-5x^(4))x5x^(6)(x^(4)-3x^(2))

Find the eccentricity, length of latus rectum, centre, foci, vertices and the equatioin to the dircctriccs of the hyperola. (i) 4x^(2)-5y^(2)-16x+10y+31=0 (ii) 5x^(2)-4y^(2)+20x+8y-4=0 (iii) 4(y+3)^(2)-9(x-2)^(2)=1 (iv) 4x^(2)-9y^(2)-8x-32=0