Home
Class 12
PHYSICS
A cylinder of length L has a charge of m...

A cylinder of length L has a charge of magnitude q. The electric intensity at a point at a distance r from the axis of the cylinder is

Promotional Banner

Similar Questions

Explore conceptually related problems

A sphere of radius R has a charge density sigma . The electric intensity at a point at a distance r from its centre is

A dielectric cylinder of radius a is infinitely long. It is non-uniformly charged such that volume charge density rho varies directly as the distance from the cylinder. Calculate the electric field intensity due to it at a point located at a distance r from the axis of the cylinder. Given that rho is zero at the axis and it is equal to rho on the surface of cylinder. Also calculate the potential difference between the axis and the surface. [(rhor^(2))/(3in_(0)a),(rhoa^(2))/(9in_(0))]

An infinitely long solid cylinder of radius R has a uniform volume charge density rho . It has a spherical cavity of radius R//2 with its centre on the axis of cylinder, as shown in the figure. The magnitude of the electric field at the point P , which is at a distance 2 R form the axis of the cylinder, is given by the expression ( 23 r R)/( 16 k e_0) . The value of k is . .

Consider a sphere of radius R and cylinder of length L. If both have same charge density sigma and E_(s) and E_(c) are electric intensity at a point at a distance r from axis of sphere and cylinder respectively, then E_(s) equal to

If sigma is surface density of charge on the charged cylinder of radius R, then electric intensity E at outer point at a distance r from its axis is

A charge of 5xx10^(-10)C is given to a metal cylinder of length 10 cm, placed in air. The electric intensity due to the cylinder at a distance of 0.2 m from its axis is