Home
Class 11
PHYSICS
(P+Q) व (P-Q) परिमाण के बल किस कोण पर का...

`(P+Q)` व `(P-Q)` परिमाण के बल किस कोण पर कार्यरत हो जिससे इनका परिणामी `sqrt(3P^(2)+Q^(2))` हो जाये ।

Promotional Banner

Similar Questions

Explore conceptually related problems

AT what angle two forces (P +Q) and (P-Q) act so that resultant is (i) sqrt(2 P^2 + Q^2) (ii) sqrt(2 P^2 + Q^2) (iii) sqrt(2 P^2 + Q^2) .

If P : Q = 5:2,then (2P - 3Q) : (3P - 5Q) is equal to: यदि P : Q = 5 : 2 है, तो (2P - 3Q) : (3P - 5Q) का मान किसके बराबर होगा ?

At what angle do the two forces (P+Q) and (P-Q) act so that the resultant is sqrt(3P^(2)+Q^(2)) ?

Let P and Q be 3 xx3 matrices with P != Q . If P^(3) = Q^(3) and P^(2) Q = P^(2)Q = Q^(2) P , then determinant of (P^(2) + Q^(2)) is equal to :

If AM and GM of x and y are in the ratio p: q, then x: y is : a) p - sqrt(p^(2)+ q^(2)) : p +sqrt (p^(2)+ q^(2)) b) p +sqrt(p^(2) - q^ (2) ) : p- sqrt(p^(2)-q^(2)) c) p : q d) p + sqrt(p^(2) + q^(2)) : p-sqrt(p^(2) + q^(2))

At what angle do two forces (P+Q) and (P-Q) act so that the resultant is sqrt(3P^2+Q^2)

If the ratio of A.M. of two numbers x and y to their G.M. is p : q, show that, x : y = (p + sqrt(p^(2) - q^(2))) : (p- sqrt(p^(2) - q^(2)))