Home
Class 12
PHYSICS
For any two vectors A and B, if vec(A).v...

For any two vectors A and B, if `vec(A).vec(B) = |vec(A) xx vec(B)|`, the magnitude of `vec(C ) = vec(A) + vec(B)` is equal to :

Promotional Banner

Similar Questions

Explore conceptually related problems

Two vectors vec(A) and vec(B) have magnitudes 2 and 2sqrt(2) respectively. It is found that vec(A).vec(B) = |vec(A) xx vec(B)| , then the value of |(vec(A)+vec(B))/(vec(A)-vec(B))| will be :

If vec(A) and vec(B) are two vectors , vec(A) . vec(B) = vec(A) xx vec(B) then resultant vector is :

a, b are the magnitudes of vectors vec(a) & vec(b) . If vec(a)xx vec(b)=0 the value of vec(a).vec(b) is

If vec(b) and vec(c) are two non-collinear vectors such that vec(a) || (vec(b) xx vec(c)) , then (vec(a) xx vec(b)).(vec(a) xx vec(c)) is equal to

If vec A and vec B are two vectors satisfying the relation vec A cdot vec B = |vec A xx vec B| . Then the value of |vec A - vec B| will be :

For any three vectors vec(a), vec(b) and vec(c) , evaluate vec(a) xx (vec(b) + vec(c)) + vec(b) xx (vec(c) + vec(a)) + vec(c) xx (vec(a) + vec(b)) .

If vec(a), vec(b) and vec(c) are three vectors such that vec(a) + vec(b) + vec(c) = vec(0) , then prove that vec(a) xx vec(b) = vec(b) xx vec(c) = vec(c) xx vec(a) .