Home
Class 11
MATHS
[[i,0,0],[0,i,0],[0,0,i]]" the "A^(4n+1)...

[[i,0,0],[0,i,0],[0,0,i]]" the "A^(4n+1)=...,n in N

Promotional Banner

Similar Questions

Explore conceptually related problems

[[i,0,00,i,00,0,i]] then A^(4n+1)=...n in N

If A=[(i,0,0),(0,i,0),(0,0,i)] then for ninN,A^(4n+1)=

If A=[{:(i,0),(0,i):}], n inN then A^(4n)= ...... (where I is imaginary complex number and i^(2)=-1)

If A=[[i,0],[0,i]];i=sqrt(-1), then A^(n) is equal to

If A = [(i,0),(0,i)] then A^(4n) (n in N ) equals :

if A=[[i,0] , [0,i]] where i=sqrt(-1) and x epsilon N then A^(4x) equals to:

if A=[[i,0] , [0,i]] where i=sqrt(-1) and x in N then A^(4x) equals to:

if A=[[i,0] , [0,i]] where i=sqrt(-1) and x epsilon N then A^(4x) equals to:

If A=[[cos theta , sin theta],[sin theta,-costheta]], B = [[1,0],[-1,1]], C=ABA^(T), then A^(T) C^(n) A, n in I^(+) equals to a. [[-n,1],[1,0]] b. [[1,-n],[0,1]] c. [[0,1],[1,-n]] d. [[1,0],[-n,1]]