Home
Class 14
MATHS
sqrt(26-15sqrt(3))...

sqrt(26-15sqrt(3))

Promotional Banner

Similar Questions

Explore conceptually related problems

root(3)(26-15sqrt(3))=

If the value of the determinant |{:(3sqrt(6),-4sqrt(2)),(5sqrt(3),x):}| is 26sqrt(6) , find the value of x .

If log_(7)log_(7) sqrt(7sqrt(7sqrt(7)))=1-a log_(7)2 and log_(15)log_(15) sqrt(15sqrt(15sqrt(15sqrt(15))))=1-b log_(15)2 , then a+b=

If log_(7)log_(7) sqrt(7sqrt(7sqrt(7)))=1-a log_(7)2 and log_(15)log_(15) sqrt(15sqrt(15sqrt(15sqrt(15))))=1-b log_(15)2 , then a+b=

Simplify the following :(5sqrt(5))/(sqrt(11)+sqrt(6))-(3sqrt(3))/(sqrt(6)+sqrt(3))-(3sqrt(2))/(sqrt(15)+3sqrt(2))

Simplify: (7sqrt(3))/(sqrt(10)+sqrt(3))-(2sqrt(5))/(sqrt(6)+sqrt(5))-(3sqrt(2))/(sqrt(15)+3sqrt(2))

The sum of the series (1)/(sqrt(1)+sqrt(2))+(1)/(sqrt(2)+sqrt(3))+(1)/(sqrt(3)+sqrt(4))+ up to 15 terms is

The value of |{:(sqrt(13 )+ sqrt(3), 2sqrt(5),sqrt(5)),(sqrt(15) + sqrt(26),5,sqrt(10)),(3 + sqrt(65), sqrt(15),5):}|