Home
Class 12
MATHS
" 62It "[[r+2,5],[-2,r+1]]=[[4,y+3],[z,3...

" 62It "[[r+2,5],[-2,r+1]]=[[4,y+3],[z,3]]" ,then "

Promotional Banner

Similar Questions

Explore conceptually related problems

If it [[r + 2.5-2, r + 1]] = it [[4, y + 3z, 3]], then

[[2,5],[3,4]][[3,1],[-2,3]]=[[x,y],[1,z]] find x,y and z.

If S_r = |[2r,x,n(n+1)],[6r^2-1,y,n^2(2n+3)],[4r^3-2nr,z,n^3(n+1)]| then sum_(r=1)^nS_r does not depend on-

If Delta_r=|[2^(r-1)2 , 3^(r-1) , 4. 5^(r-1)] , [x , y , z] , [2^n-1 , 3^n-1 , 5^n-1]|dot Show that sum_(r=1)^n Delta_r=Con s t a n t

If Delta_r=|[2^(r-1) , 2.3^(r-1) , 4. 5^(r-1)] , [x , y , z] , [2^n-1 , 3^n-1 , 5^n-1]|dot Show that sum_(r=1)^n Delta_r=Con s t a n t

If A={1, 2, 3, 4, 5} and R:ArarrA is {(1,2), (2,3), (4,5), (3,3)} then write R^-1:ArarrA .

If D_(r)=det[[(1)/(2^(r-1)),(1)/(3^(r-1)),(1)/(5^(r-1))x,y,z2,(3)/(2),(5)/(4)]] then sum_(r=1)^(oo)D_(r) is

If "Delta"_r=|[2^(r-1),2. 3^(r-1),4. 5^(r-1)],[x, y ,z],[2^n-1, 3^n-1, 5^n-1]| Show that sum_(r=1)^n"Delta"_r = Constant

If z_1, z_2, z_3 are three complex, numbers and A=[[a r g z_1,a r g z_3,a r g z_3],[a r g z_2,a r g z_2,a r g z_1],[a r g z_3,a r g z_1,a r g z_2]] Then A divisible by a r g(z_1+z_2+z_3) b. a r g(z_1, z_2, z_3) c. all numbers d. cannot say