Home
Class 11
CHEMISTRY
Calculate the Delta H for the isothermal...

Calculate the `Delta H` for the isothermal reversible expansion of 1 mole of an ideal gas from initial pressure of 1.0 bar to a final pressure 0.1 bar at a constant temperature at 273K.

Text Solution

Verified by Experts

The correct Answer is:
0

Constant `T rArr Delta H = 0`
Promotional Banner

Topper's Solved these Questions

  • CHEMICAL THERMODYNAMICS

    AAKASH SERIES|Exercise PRACTICE SHEET (EXERCISE- II) (LEVEL- I (MAIN) STRAIGHT OBJECTIVE TYPE QUESTIONS)|36 Videos
  • CHEMICAL THERMODYNAMICS

    AAKASH SERIES|Exercise PRACTICE SHEET (EXERCISE- II) (LEVEL- II (ADVANCED) STRAIGHT OBJECTIVE TYPE QUESTIONS)|4 Videos
  • CHEMICAL THERMODYNAMICS

    AAKASH SERIES|Exercise PRACTICE SHEET (EXERCISE- I) (LEVEL- II (ADVANCED) MATRIX MATCHING TYPE QUESTIONS)|2 Videos
  • CHEMICAL THERMODYANMICS

    AAKASH SERIES|Exercise Questions For Descriptive Answers|28 Videos
  • ELECTRON MIGRATION EFFECTS

    AAKASH SERIES|Exercise QUESTIONS FOR DESCRIPTIVE ANSWERS|10 Videos

Similar Questions

Explore conceptually related problems

For an ideal gas, number of moles per lit in terms of pressure (P), gas constant (R) and temperature (T) is

Calculate work done when 1 mole of an ideal gas is expanded reversibly from 20 L to 40 L at a constant temperature of 300 K.

An ideal gas undergoes isothermal expansion at constant pressure . During the process

Draw the P-T and V-T diagrams of an isochoric process of n moles of an ideal gas from pressure P_(0) , volume V_(0) to pressure 4P_(0) , indicating the pressures, and temperatures, of the gas, in the initial and the final states.

The volume of 10 moles of an ideal gas at 27^@C and latm pressure is 1 lit. What is the volume of 20 moles of same gas at same pressure and temperature?

The temperature of 5 moles of a gas is decreased by 2K at constant pressure of 1 atm. Indicate the correct statement

An ideal gas occuping a volume of 2 dm^(3) and a pressure of 5 bar undergoes isothermal and irreversible expansion against external pressure of 1 bar. The final volume of the system and work involved in the process is