Home
Class 12
MATHS
" 1.Prove that "int(0)^((1)/(sqrt(2)))(s...

" 1.Prove that "int_(0)^((1)/(sqrt(2)))(sin^(-1)xdx)/((1-x^(2))^(3)-2)=(pi)/(4)-(1)/(2)" log "2

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that int_(0)^((pi)/(4))2tan^(3)xdx=1-log2

int_(0)^(pi//2)(sin^(2)xdx)/((1+cosx)^(2))= ………

Prove that int_(0)^((pi)/(2))sin2x log tan xdx=0

Prove that int_(0)^(1)sin^(-1)xdx=(pi)/(2)-1

Show that int_(0)^(1//2)(x sin^(-1)x)/(sqrt(1-x^(2)))dx = (1)/(2)-(sqrt(3))/(12)pi

Prove that :int_(0)^((pi)/(2))sqrt(1-sin2x)dx=2(sqrt(2)-1)

Prove that int_(0)^(1) log(sqrt(1-x)+sqrt(1+x))dx = (1)/(2) log 2 + (pi)/(4) - (1)/(2)

Prove that : int_(0)^(1)(sin^(-1)x)/(x) dx = (pi)/(2) log 2

Prove the following int_(0)^(1)sin^(-1)xdx=(pi)/(2)-1

Prove that int_(0)^((pi)/(2))(sin^(2)x)/(1+sin x cos x)dx=(pi)/(3sqrt(3))