Home
Class 11
MATHS
" If "sqrt(x^(2)+y^(2))=e^(t)" where "t=...

" If "sqrt(x^(2)+y^(2))=e^(t)" where "t=sin^(-1)((y)/(sqrt(x^(2)+y^(2))))" and "x>0," then "(dy)/(dx)=

Promotional Banner

Similar Questions

Explore conceptually related problems

if sqrt(x^(2)+y^(2))=e^(t) where t=sin^(-1)((y)/(sqrt(x^(2)+y^(2)))) then (dy)/(dx) is equal to

If y=sin ^(-1)((x)/( sqrt(x^(2) +a^(2)))) ,then (dy)/(dx)=

if sqrt(x^2+y^2)=e^t where t=sin^-1 (y/sqrt(x^2+y^2)) then (dy)/(dx) is equal to :

If y = cos^(-1) ((1)/( sqrt(1+t^(2)))), x = sin^(-1) (sqrt((t^(2))/(1 + t^(2)))), "find " (dy)/(dx)

If y = int_(0)^(x) (t^(2))/(sqrt(t^(2)+1))dt then (dy)/(dx) at x=1 is

If x=sin^(-1)((t)/(sqrt(1+t^(2)))),y=cos^(-1)((1)/(sqrt(1+t^(2)))),"show that "(dy)/(dx)=1

If x = cos^(-1) (1/(sqrt(1+t^(2)))), y = sin^(-1) (t/(sqrt(1+t^(2)))) then dy/dx =

if x=sqrt((1-t^(2))/(1+t^(2))),y=(sqrt(1+t^(2))-sqrt(1-t^(2)))/(sqrt(1+t^(2))+sqrt(1-t^(2))) then (dy)/(dx)

If x = Sin ^(-1) t, y = sqrt(1- t ^(2)) then (d^(2) y)/(dx ^(2))=

If x=sqrt(a^(sin^(-1)t)), y=sqrt(a^(cos^(-1)t)) , Show that (dy)/(dx)=-y/x .