Home
Class 12
MATHS
A point P on the ellipse (x^(2))/(2)+(y^...

A point P on the ellipse `(x^(2))/(2)+(y^(2))/(1)=1` is at distance of `sqrt(2)` from its focus s. the ratio of its distance from the directrics of the ellipse is

Promotional Banner

Similar Questions

Explore conceptually related problems

A point P lies on the ellipe ((y-1)^(2))/(64)+((x+2)^(2))/(49)=1 . If the distance of P from one focus is 10 units, then find its distance from other focus.

A point P lies on the ellipe ((y-1)^(2))/(64)+((x+2)^(2))/(49)=1 . If the distance of P from one focus is 10 units, then find its distance from other focus.

A point P lies on the ellipe ((y-1)^(2))/(64)+((x+2)^(2))/(49)=1 . If the distance of P from one focus is 10 units, then find its distance from other focus.

Let there are exactly two points on the ellipse (x^(2))/(a^(2))+(y^(2))/(b^(2))=1 whose distance from (0, 0) are equal to sqrt((a^(2))/(2)+b^(2)) . Then, the eccentricity of the ellipse is equal to

Let there are exactly two points on the ellipse (x^(2))/(a^(2))+(y^(2))/(b^(2))=1 whose distance from (0, 0) are equal to sqrt((a^(2))/(2)+b^(2)) . Then, the eccentricity of the ellipse is equal to

If the normal to the ellipse x^2/25+y^2/1=1 is at a distance p from the origin then the maximum value of p is

If the normal to the ellipse x^2/25+y^2/1=1 is at a distance p from the origin then the maximum value of p is

There are exactly two points on the ellipse (x^2)/(a^2)+(y^2)/(b^2) =1 whose distance from the centre of the ellipse are equal to sqrt((3a^2-b^2)/(3)) . Eccentricity of this ellipse is

There are exactly two points on the ellipse (x^2)/(a^2)+(y^2)/(b^2) =1 whose distance from the centre of the ellipse are equal to sqrt((3a^2-b^2)/(3)) . Eccentricity of this ellipse is

There are exactly two points on the ellipse (x^2)/(a^2)+(y^2)/(b^2) =1 whose distance from the centre of the ellipse are equal to sqrt((3a^2-b^2)/(3)) . Eccentricity of this ellipse is