Home
Class 11
MATHS
log2xlt=2/(log2x-1)...

`log_2xlt=2/(log_2x-1)`

Promotional Banner

Similar Questions

Explore conceptually related problems

log_(2)x<=(2)/(log_(2)x-1)

If 3^(x)=4^(x-1), then x=(2log_(3)2)/(2log_(3)2-1)(b)(2)/(2-log_(2)3)(1)/(1-log_(4)3)(d)(2log_(2)3)/(2log_(2)3-1)

Solve for 'x' 9^("log"_3("log"_2x))="log"_2x-("log"_2x)^2+1

If log_2 (log_8x)=log_8(log_2x), find the value of (log_2x)^2.

Determine x if log_3 {log_2 (log_2 x)}=1

Solve the following equation for x: 9^(log_3(log_2x))=log_2 x- (log_2 x)^2+1

log_(2)x+(1)/(2)log_(2)(x+2)=2

If 3^x=4^(x-1) , then x= (2(log)_3 2)/(2(log)_3 2-1) (b) 2/(2-(log)_2 3) 1/(1-(log)_4 3) (d) (2(log)_2 3)/(2(log)_2 3-1)

If 3^x=4^(x-1) , then x= (2(log)_3 2)/(2(log)_3 2-1) (b) 2/(2-(log)_2 3) 1/(1-(log)_4 3) (d) (2(log)_2 3)/(2(log)_2 3-1)