Home
Class 9
MATHS
log (a+b) + log (a-b) - log (a^(2) -b^(2...

`log (a+b) + log (a-b) - log (a^(2) -b^(2))=______

Promotional Banner

Similar Questions

Explore conceptually related problems

log(a^(3) +b^(3)) -log(a+b)-log (a^(2) -ab + b^(2)) =_______

log (a^(2)/b)+log(a^(4)/b^(3)) + log (a^(6)/b^(3))+…… +log ((a^(2n))/b^(n))=?

The sequence log a, log (a^(2)/b), log (a^(3)/b^(2)) is:

If "log" (a-b)/(2) = (1)/(2) (log a + log b), show that : a^(2) + b^(2) = 6ab .

If a^(4) + b^(4) = 14 a^(2)b^(2) , then show that log(a^(2) + b^(2)) = log a + log b + 2 log 2 .

Show that the sequence: log a, log ((a^2)/b), log(( a^3)/(b^2)) . . is an A.P.

Prove that "log"_(a^(2))a " log"_(b^(2)) b" log_(c^(2))c = (1)/(8) .

If log(2a-3b)=log a-log b, then a=