Home
Class 12
MATHS
If intf(x)/(logcosx)dx=-log(logcosx)+c, ...

If `intf(x)/(logcosx)dx=-log(logcosx)+c`, then f(x) is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

If int(f(x))/(logsinx)dx=log*logsinx, then f(x) is equal to

If int(f(x))/(log(sinx))dx=log[log sinx]+c , then f(x) is equal to

If int(f(x))/(log(sinx))dx=log[log sinx]+c , then f(x) is equal to

If int (f(x))/(log cos x) dx = - log(log cos x) + C , then f(x) is equal to a)tan x b) -sin x c) -cos x d) -tan x

If int (1)/(f(x))dx=log [ f(x)]^(2)+c , then f(x) is equal to:

inte^x(tanx-logcosx)dx

If int (f(x))/(log (sin x))dx =log [log sin x]+c , then f(x) =

If intf(x)sinxcosxdx=1/(2(b^2-a^2))lnf(x)+c ,then f(x) is equal to

If intf(x)sinxcosxdx=1/(2(b^2-a^2))lnf(x)+c ,then f(x) is equal to

int((1-tanx)/(x+logcosx))dx