Home
Class 12
MATHS
If x^y=e^(x-y), then find (d y)/(d x) at...

If `x^y=e^(x-y),` then find `(d y)/(d x) at x=1`

Promotional Banner

Similar Questions

Explore conceptually related problems

Consider the equation x^(y)=e^(x-y) What is (d^(2)y)/(dx^(2)) at x=1 equal to ?

y=x+e^(x), then (d^(2)y)/(dx^(2))=

If y = x+e^(x) ,then find d^(2)x/dy^(2) .

If y=e^x sinx then find d^2 y/dx^2

If y=e^(x) , then (d^(2)y)/(dx^(2)) = e^(x) .

If x+y=e^(x-y) then show that (d^(2)y)/(dx^(2))=(4(x+y))/((1+x+y)^(3))

If y=x+e^(x)," then: "(d^(2)y)/(sx^(2))=

If y=x+e^(x), find (d^(2)x)/(dy^(2))

If y = e^(x) sin x then (d^(2)y)/(dx^(2)) =

If e^(x)+x=e^(y) , Find, (d^(2)y)/(dx^(2)) .