Home
Class 12
MATHS
IF 3x^2+2(p+q+r)x+pq+qr+rp be a perfect ...

IF `3x^2+2(p+q+r)x+pq+qr+rp` be a perfect square , prove that p=q=r.

Promotional Banner

Similar Questions

Explore conceptually related problems

If the roots of the equation 3x^2 +2 (p + q+ r)x + (pq + qr + pr) = 0 are equal show that p=q=r .

If (p^2+q^2), (pq+qr), (q^2+r^2) are in GP then Prove that p, q, r are in G.P.

If p,q & r are all non zero and p+q+r=0, prove that p^(2)/(qr)+(q^(2))/(rp)+(r^(2))/(pr)=3

if p: q :: r , prove that p : r = p^(2): q^(2) .

If p(q-r)x^2+q(r-p)x+r(p-q)=0 has equal roots, then prove that 2/q=1/p+1/rdot

If p(q-r)x^2+q(r-p)x+r(p-q)=0 has equal roots, then prove that 2/q=1/p+1/rdot

If p(q-r)x^2+q(r-p)x+r(p-q)=0 has equal roots, then prove that 2/q=1/p+1/rdot

If p(q-r)x^2+q(r-p)x+r(p-q)=0 has equal roots, then prove that 2/q=1/p+1/rdot

If p(q-r)x^2+q(r-p)x+r(p-q)=0 has equal roots, then prove that 2/q=1/p+1/rdot

If p(q-r)x^2+q(r-p)x+r(p-q)=0 has equal roots, then prove that 2/q=1/p+1/rdot