Home
Class 12
MATHS
Sum of the series (x+y)(x-y) +1/(2!)(x...

Sum of the series
`(x+y)(x-y) +1/(2!)(x+y) (x-y) (x^(2)+y^(2))`
` 1/(3!)(x+y)(x-y)(x^(4)+y^(4)+x^(2)y^(2))+...` is

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of (x+y)(x-y)+(1)/(2!)(x+y)(x-y)(x^(2)+y^(2))+(1)/(3!)(x+y)(x-y)(x^(4)+y^(4)+x^(2)y^(2)) is i

If S=(x+y)(x-y)+(1)/(2!)(x+y)(x-y)(x^(2)+y^(2))+(1)/(3!)(x+y)(x-y)(x^(4)+y^(4)+x^(2)y^(2))+..., then S =

The value of (x+y)(x-y)+1/(2!)(x+y)(x-y)(x^2+y^2)+1/(3!)(x+y)(x-y)(x^4+y^4+x^2y^2)+ ... is :

Sum the series: x(x+y)+x^(2)(x^(2)+y^(2))+x^(3)(x^(3)+y^(3)).... to n terms

Simplify : (x-2y)(x^2-2y)+(y+2x)(x^2+4y)-(3x-2y)(x^2-4y) .

Sum the series : x(x+y)+x^(2)(x^(2)+y^(2))+x^(3)(x^(3)+y^(3)+... to n terms.

The solution of the differential equation (dy)/(dx)+(x(x^(2)+3y^(2)))/(y(y^(2)+3x^(2)))=0 is (a) x^(4)+y^(4)+x^(2)y^(2)=c (b) x^(4)+y^(4)+3x^(2)y^(2)=c (c) x^(4)+y^(4)+6x^(2)y^(2)=c (d) x^(4)+y^(4)+9x^(2)y^(2)=c

(x + 2) (x + 1) = (x -2) (x -3) (y+3)(y+2)=(y-1)(y-2)