Home
Class 12
MATHS
यदि y=x^(3)+tanx, तब (d^(2)y)/(dx^(2))=...

यदि `y=x^(3)+tanx,` तब `(d^(2)y)/(dx^(2))=`

Promotional Banner

Similar Questions

Explore conceptually related problems

If y= x^(3)log x,then ( d^(2)y)/(dx^(2)) =

If y = 3 ^(x), then (d ^(2) y)/(dx ^(2)) =

If y=x^(4) , find (d^(2)y)/(dx^(2))and(d^(3)y)/(dx^(3)) .

If y=x^(4) , find (d^(2)y)/(dx^(2))and(d^(3)y)/(dx^(3)) .

find order and degree [(d^(3)y)/(dx^(3)) +x]^(5/2) = (d^(2)y)/(dx^(2))

If y = root(3)(x) , then (d^(2)y)/(dx^(2) =

If y=e^(tanx)," then "(cos^(2)x)d^(2)/(dx^(2))=

If y=sec x-tanx ,show that (cosx)(d^(2)y)/(dx^(2))=y^(2).

If y=tanx , then show that : (d^(2)y)/(dx^(2))=2ydy/dx