Home
Class 14
MATHS
Lt(x rarr0)(2^(x)-1)/(x)...

Lt_(x rarr0)(2^(x)-1)/(x)

Promotional Banner

Similar Questions

Explore conceptually related problems

Lt_(x rarr0)(e^(x)-1)/(x) is equal to

lim_(x rarr0)(2^(2x)-1)/(x)

lim_(x rarr0)(2^(5x)-1)/(x)

lim_(x rarr0)(2^(x)-1)/(x)

Lt_(x rarr0) (3^(2x)-1)/(x) is equal to

Lt_(x rarr0)(e^(x)-1)/(sqrt(4+x)-2)=

Evaluate : lim_(x rarr0)(a^(2x)-1)/(x)

Use formula lim_(x rarr0)(a^(x)-1)/(x)=log(a) to find lim_(x rarr0)(2^(x)-1)/((1+x)^((1)/(2))-1)

Use the formula l t_(x rarr 0)(a^(x)-1)/(x) = log_(e) a, to compute l t_(x rarr 0)(2^(x)-1)/(sqrt(1+x)-1)

lim_(x rarr0)(b^(x)-1)/(a^(x)-1)