Home
Class 11
MATHS
" 150."log^(2)x-3log x=log(x^(2))-4...

" 150."log^(2)x-3log x=log(x^(2))-4

Promotional Banner

Similar Questions

Explore conceptually related problems

Solve following log equation log^(2)x-3log x=log(x^(2))-4

Solve: 4^((log)_(2)log x)=log x-(log x)^(2) (base is e)

If "log"_(8){"log"_(2) "log"_(3) (x^(2) -4x +85)} = (1)/(3) , then x equals to

If "log"_(8){"log"_(2) "log"_(3) (x^(2) -4x +85)} = (1)/(3) , then x equals to

If 9^("log"3("log"_(2) x)) = "log"_(2)x - ("log"_(2)x)^(2) + 1, then x =

If 9^("log"_3("log"_(2) x)) = "log"_(2)x - ("log"_(2)x)^(2) + 1, then x =

Solve for x:|log^(2)(4-x)+log(4-x)*log(x+(1)/(2))-2log^(2)(x+(1)/(2))=

Solve for x:\ log^2 (4-x)+log(4-x)*log(x+1/2)-2log^2(x+1/2)=0

Solve for x:\ log^2 (4-x)+log(4-x)*log(x+1/2)-2log^2(x+1/2)=0

If "log"_(3) x xx "log"_(x) 2x xx "log"_(2x)y ="log"_(x) x^(2) , then y equals