Home
Class 12
MATHS
If z be any complex number (z!=0) then ...

If z be any complex number `(z!=0)` then `arg((z-i)/(z+i))=pi/2`represents the curve

Promotional Banner

Similar Questions

Explore conceptually related problems

If z=-i-1 is a complex number,then arg (z) will be

If z ne 0 be a complex number and "arg"(z)=pi//4 , then

If z ne 0 be a complex number and "arg"(z)=pi//4 , then

Let z_(1)=6+i&z_(2)=4-3i Let z be a a complex number such that arg((z-z_(1))/(z-z_(2)))=(pi)/(2) then z satisfies

If z=x+i y is a variable complex number such that arg ((z-1)/(z+1))=(pi/4) , then

If z_(1) = 8 + 4i , z_(2) = 6 + 4i and z be a complex number such that Arg ((z - z_(1))/(z - z_(2))) = (pi)/(4) , then the locus of z is

If Z= -1+i be a complex number .Then Arg(Z) is equal to

If z and we are two complex numbers such that |zw|=1 and arg(z)-arg(w)=(pi)/(2) then show that barzw=-i

Let z!=i be any complex number such that (z-i)/(z+i) is a purely imaginary number. Then z+ 1/z is