Home
Class 11
MATHS
यदि a, b, c, A. P. में हो तो साबित कीजिय...

यदि a, b, c, A. P. में हो तो साबित कीजिये कि
(i) `2(a-b)=a-c=2(b-c)`
(ii) `(a-c)^(2)=4(b^(2)-ac)`

Promotional Banner

Similar Questions

Explore conceptually related problems

If a, b, c are in A.P., then prove that : (i) ab+bc=2b^(2) (ii) (a-c)^(2)=4(b^(2)-ac) (iii) a^(2)+c^(2)+4ca=2(ab+bc+ca).

If a, b, c are in A.P., then prove that : (i) ab+bc=2b^(2) (ii) (a-c)^(2)=4(b^(2)-ac) (iii) a^(2)+c^(2)+4ca=2(ab+bc+ca).

if a,b,c are in AP, prove that (a-c)^(2) = 4( b^(2) -ac)

If a,b,c are in A.P.then ((a-c)^(2))/((b^(2)-ac)=)

Simplify : (i) (a+b+c)^2 (ii) (a+b+c)^2-(a-b-c)^2

If a,b,c are in A.P., show that (a-c)^(2)=4(b^(2)-ac) .

If a,b,c are in AP,then prove that (a-c)^(2)=4(b^(2)-ac)

(i) a , b, c are in H.P. , show that (b + a)/(b -a) + (b + c)/(b - c) = 2 (ii) If a^(2), b^(2), c^(2) are A.P. then b + c , c + a , a + b are in H.P. .

(i) a , b, c are in H.P. , show that (b + a)/(b -a) + (b + c)/(b - c) = 2 (ii) If a^(2), b^(2), c^(2) are A.P. then b + c , c + a , a + b are in H.P. .