Home
Class 12
MATHS
Let f(x)=a^(x)(a gt 0) be written as f(x...

Let `f(x)=a^(x)(a gt 0)` be written as `f(x)=f_(1)(x)+f_(2)(x), " where " f_(1)(x)` is an function and `f_(2)(x)` is an odd function. Then `f_(1)(x+y)+f_(1)(x-y)` equals

Promotional Banner

Similar Questions

Explore conceptually related problems

Let f (x) = a ^ x ( a gt 0 ) be written as f ( x ) = f _ 1 (x ) + f _ 2 (x) , where f _ 1 ( x ) is an even function and f _ 2 (x) is an odd function. Then f _ 1 ( x + y ) + f _ 1 ( x - y ) equals :

Let f (x) = a ^ x ( a gt 0 ) be written as f ( x ) = f _ 1 (x ) + f _ 2 (x) , where f _ 1 ( x ) is an even function and f _ 2 (x) is an odd function. Then f _ 1 ( x + y ) + f _ 1 ( x - y ) equals :

If f(x) is a function such that f(xy)=f(x)+f(y) and f(2)=1 then f(x)=

Let f be function satisfying f(x+y)=f(x)+f(y) and f(x)=x^(2)g(x) , for all x and y, where g(x) is a continuous function. Then f'(x) is :

Let a function f(x), x ne 0 be such that f(x)+f((1)/(x))=f(x)*f((1)/(x))" then " f(x) can be

Let a function f(x), x ne 0 be such that f(x)+f((1)/(x))=f(x)*f((1)/(x))" then " f(x) can be

Let f be a differential function such that f(x)=f(2-x) and g(x)=f(1+x) then (1) g(x) is an odd function (2)g(x) is an even function (3) graph of f(x) is symmetrical about the line x=1 (4) f'(1)=0

Let f be a differential function such that f(x)=f(2-x) and g(x)=f(1 +x) then (1) g(x) is an odd function (2) g(x) is an even function (3) graph of f(x) is symmetrical about the line x= 1 (4) f'(1)=0