Home
Class 12
MATHS
If y=(tan^(-1)x)^2, then (x^2+1)^2 (d^2y...

If `y=(tan^(-1)x)^2`, then `(x^2+1)^2 (d^2y)/(dx^2) + 2x(x^2+1) dy/dx=`

Promotional Banner

Similar Questions

Explore conceptually related problems

If y=(tan^(-1)x)^2 then show that (x^2+1)^2 (d^2y)/(dx^2)+2x(x^2+1)((dy)/(dx))=2 .

If y= (tan^(-1)x)^2, then show that (1+x^2)^2(d^2y)/(dx^2)+2x(1+x^2)(dy)/(dx) =2 .

If y=(tan^-1x)^2 , show that, (1+x^2)^2(d^2y)/(dx^2)+2x(1+x^2)dy/dx-2=0 .

IF [y= (tan^-1 x)^2 , show that [(x^2 +1)^2 d^2y/dx^2+2x (x^2 + 1)dy/dx=2]

If y = (tan^-1 x)^2 , then prove that (1+x^2)^2 (d^2y)/(dx^2) + 2x(1+x^2)dy/dx - 2 = 0

If y= (sin^(-1) x)^2 , then (1-x^2) (d^2 y)/(dx^2) - x (dy/dx) = ..........

If y = e^(2tan^-1 x) , then show that (1+x^2)^2 (d^2y)/(dx^2) + 2x(1+x^2)dy/dx = 4y

If y = e^(4tan^-1 x) , then show that (1+x^2)^2 (d^2y)/(dx^2) + 2x(1+x^2)dy/dx = 16y

If y = e^(3tan^-1 x) , then show that (1+x^2)^2 (d^2y)/(dx^2) + 2x(1+x^2)dy/dx = 9y

IF y= ( tan ^(-1) x)^(2) " then " (x^(2) +1)^(2) (d^(2)y)/(dx^(2))+2x(x^(2)+1)(dy)/(dx)=